Extension of Petri Nets by Aspects to Apply the Model Driven Architecture Approach

Ella Roubtsova¹ and Mehmet Aksit ²

¹ Technical University Eindhoven, Den Dolech 2, P.O. Box 513, 5600MB Eindhoven, The Netherlands. E.Roubtsova@tue.nl
² University of Twente, PO Box 217 7500 AE Enschede the Netherlands. M.Aksit@ewi.utwente.nl

Abstract. Within MDA models are usually created in the UML. However, one may prefer to use different notations such as Petri-nets, for example, for modelling concurrency and synchronization properties of systems. This paper claims that techniques that are adopted within the context of MDA can also be beneficial in modelling systems by using notations other than the UML. Petri-Nets are widely used for modelling of business and application logic of information systems with web services. Generally, Petri Nets are suitable to build Computation Independent, Platform Independent and Platform Specific Models (CIM, PIM and PSM), but the well-known problems with separation of concerns in Petri Nets and keeping track of changes do not allow achieving the aim of MDA: building reusable, portable and interoperable models. In this paper we define Aspect Petri Nets as a structure of several Petri Nets and quantification rules for weaving of those Petri Nets. Aspect Petri Nets are suitable for application of MDA: they support traceability of changes and reusability, portability and interoperability of models. We illustrate advantages of modelling in Aspect Petri Nets for MDA application and describe necessary tool support.

Keywords: Model Driven Architecture application, Petri Nets, Aspect-oriented system development, join point model, logic of weaving of aspects in Petri Nets, model transformations

1 Introduction

Model Driven Architecture (MDA) is attractive approach for system development. The main idea of MDA is to separate system specification from the details of its implementation platform [8] and develop three groups of models: Computation Independent (CIM), Platform Independent (PIM) and Platform Specific Models (PSM) [8]. The transformation steps from CIM to PIM and from PIM to PSM should be specified as MDA mapping to guarantee traceability of design decisions and model reuse for other platforms and other systems [4].

Usually the models are created in the Unified Modelling Language (UML), the standard language of MDA [7]. However, in practice other graphical design notations are also widely used by different communities. The Model Driven
Architecture approach can be equally applied when developing systems in notations different from the UML. One of these widely spread modelling techniques is the Petri Net technique. It exists since 1962 [9] and during last ten years this notation has extended its application domain. It is widely used for design of distributed systems, business application logic and information systems with web services [1, 3]. An extended variant of Petri Nets namely Coloured Petri Nets [5], that allows specifying data, is suitable for modelling of CIM, PIM and PSM of different complexity. This possibility to use one notation for development of CIM, PIM and PSM makes it possible to define the rules of transformation from CIM to PIM and from PIM to PSM as rules of Petri Net transformation.

Using one notation for creating models at different abstraction levels is attractive but there are shortcomings. Having several years of experience in business and industrial modelling using Coloured Petri Nets in master projects of our students we identify the shortcomings as follows:

- Petri Nets have a problem with separation of concerns. Adding non-localisable concerns during model transformations from CIM to PIM and from PIM to PSM usually results in unreadable and spaghetti-like Petri Nets. This phenomenon is especially annoying for designers if the model does not fit within the screen of a computer.
- Petri Nets do not support keeping track of modifications. This shortcoming makes it difficult to reuse models, build them portable and interoperable, because models do not allow tracing design decisions without additional documentation.

All attempts to solve the problem with separation of concerns in Petri Nets by means of extensions by colours [5] and hierarchy do not give the expected result because those additions hide concerns inside functions or hierarchical transitions and make separation of concerns even more difficult.

It is well known that the object-oriented approach does not solve the problems with separation of concerns in Petri Nets [10].

Having experienced problems with Petri Net modelling in practice, we set for ourselves the task to improve readability, traceability and reusability of Petri Nets in order to make them suitable for application of the MDA approach. To separate concerns in Petri Nets, we define the Aspect Petri Nets as a structure of several Petri Nets and introduce a join point model in Petri Nets. On the basis of the join point model we propose mechanisms for static weaving Petri Nets together. To avoid one dimension of complexity when introducing new ideas we restrict ourselves by classical Petri Nets, a subset of Coloured Petri Nets.

The paper is organized as follows. In Section 2 we show the problems with separation of concerns in Petri Nets. In Section 3 we define Aspect Petri Nets. In Section 4 on the basis of the join point model we propose a language for weaving Petri Nets. Section 5 illustrates the usage of the language by examples of quantification expressions and results of Petri Nets weaving in correspondence with those expressions. Section 6 concludes the paper by indicating advantages of aspect-oriented modelling in Petri Nets for MDA application. Future work is also discussed in this Section.
2 Problems with separation of concerns in Petri Nets

In this section we give simplified examples of a computation independent model, a platform independent model and a platform specific model represented in classical Petri Nets and show the shortcomings of Petri Nets for MDA application.

CIM. Let us consider an Internet shop where a client is able to look at offers, make his choice and purchase the chosen goods. A CIM of the Internet shop shown in Figure 1 represents the system from the client point of view. A token in place client represents a client. One token in place instance restricts the number of clients by one. The actions that a client can fulfill using the shop are the following:

– a client can look for a specific good (transition look);
– he/she can make a choice of a good (transition choose);
– then he/she can repeat searching and choosing (transition more)
– or pay for goods (transition pay) and leave the internet-shop.

![Fig. 1. A CIM of an Internet shop](image)

PIM. For the sake of simplicity our platform independent model contains only two computation dependent concerns: logging all user initiated events and cancelling work by a user. The logging concern is non-localisable. Every transition initiated by a user produces an output place log: log1, log2, log3, log4 (Figure 2). The concern of cancellation presents an opportunity to cancel the process of shopping at any intermediate point and return the system into its initial state. The intermediate points are modelled by places choice and chosen. The initial state of the system is presented in the Petri Net Service by one token depicted by a black bullet in place client and one token in place instance: (client = 1, instance = 1).

PSM. A platform specific model should include architectural elements. Dealing with Web services we think of the CORBA platform that performs dynamic service selection and invocation [1] Our application requests services to implement our Internet shop: a search service is requested before transition look and a payment service is requested before transition pay. Transition
request_1(request_2) models a request of a service and produces a service into its output place service_1(service_2). If a service has not been found then the control is taken by transition deny_1(deny_2). If a service has been found then transitions permit_1 (permit_2) takes control.

Analysing even our simplified example of PSM (Figure 2) we can see that modelling several concerns worsens readability of the model. If we model all the concerns taken into account in industrial applications, then we shall lose the readability of our model completely. The track of design decisions in the PSM is lost, i.e. design decisions cannot be recognized without additional description. It is difficult to trace the design decisions back and reuse intermediate models for another platforms or applications.

To solve the problem of losing readability and traceability of design decisions when modelling in Petri Nets we propose a new notation named Aspect Petri Nets. This notation uses Petri Nets to model aspects separately and a logical language to specify rules of aspect weaving. A concern is modelled by weaving several aspects according to the specified weaving rules. The specification of weaving rules allows backtracking design decisions. Weaving rules of a concern are used to visualise the concern model in form of the corresponding Petri Net. Weaving rules allow constructing simulation models.

3 Aspect Petri Nets

3.1 General Principles of Aspect-Oriented Approach to Software Development

The aspect-oriented approach has been successfully applied for creating aspect-oriented programming languages [2]. The aspect-oriented approach to software development defines an aspect as a unit designed to implement a concern that cannot be localized [2]. To build an aspect-oriented approach based on a chosen
notation one should find a join point model and an aspect quantification mechanism for this notation. A join point model defines the elements in a model where aspects can be attached. The join point model depends on the form of event and state presentation in the chosen notation. The join point model restricts the allowed quantification or weaving expressions, i.e. the types of predicates that a designer can use to attach aspects to each other. A concern is represented by an aspect together with its weaving expression. The main principle of the aspect-oriented approach is the principle of obliviousness of concern specification, which means that the concern on which we quantify "should not know" about other concerns and the mechanisms used for their quantification. Obliviousness allows designers to produce independent specifications of aspects.

3.2 An Aspect Petri Net

Let us define an Aspect Petri Net follow the general principles of the aspect-oriented approach to software development.

A classical Petri Net is a tuple $N = (P, T, F, M_0)$, where P is a finite set of places, T is a finite set of transitions, $F \subseteq (P \times T) \cap (T \times P)$ is the set of arcs, called a flow relation, M_0 is the initial marking $P \rightarrow \{0, 1, 2, 3, \ldots\}$ [6].

![Fig. 3. An Aspect Petri Net.](image)

We define an Aspect Petri Net as a triple $A = (SN_1, SN_2, D(SN_1, SN_2))$ where:
- SN_1 is a set of Petri nets to which we join an aspect;
- SN_2 is a set of Petri nets specifying an aspect;
- $D(SN_1, SN_2) \rightarrow \{true, false\}$ is a logical expression, named a designator or a weaving expression [2], that describes where the nets of set SN_2 can be invoked and how to join them to the nets of set SN_1.
A classical Petri Net N is an Aspect Petri Net $A = (\emptyset, \{N\}, true)$ initialized only ones without any rules, such that $D(\emptyset, N) = true$.

An Aspect Petri Net such that sets $SN_1 = \{N_1\}$ and $SN_2 = \{N_2\}$ are singletons can be represented by an abstract UML class diagram shown in Figure 3: $\ll PetriNet \gg$ and $\ll Designator \gg$. Stereotype $\ll PetriNet \gg$ is used to represent a Petri Nets N modelling an aspect. All places and transitions of a Petri Net are the attributes of an instance of this stereotype. Stereotype $\ll Designator \gg$ is a classifier for the association type representing weaving of aspects. The association is unidirectional to guarantee obliviousness of concern specification. The operations of stereotype $\ll Designator \gg$ shown in Figure 3 are defined in Section 4 on the basis of the join point model.

![Diagram of a Petri Net model](image)

Fig. 4. PSM in Aspect Petri Nets.

To let our readers evaluate the advantages of modelling in Aspect Petri Nets, we show in Figure 4 the PSM of our Internet shop modelled as an Aspect Petri Net. The aspects are represented as simple Petri Nets and design decisions are kept as designators also named weaving expressions. The PSM is easy to read and understand. The track of design decisions is kept by the designators. For the simulation purpose the weaving expressions are applied as constructive commands to build simulation models. In Section 5 we present the weaving expressions and their constructive semantics for our case study. But first, let us define a language for specification of weaving expressions.
4 A Language for Static Weaving of Classical Petri Nets

There are two types of designation points in classical Petri Nets: places and transitions. The sets of places and transitions of weaved Petri Nets form the join point model for static weaving of classical Petri Nets.

Let name specifications for \(<\text{netName}>\), \(<\text{placeName}>\), \(<\text{transitionName}>\) and \(<\text{setName}>\) be given. For all definitions of next subsections we use the following conventional names:

\(<\text{netName}>\), \(<\text{N}_1>\), \(<\text{N}_2>\) := \(<\text{netName}>\);
\(<\text{e}>\), \(<\text{e}_1>\), \(<\text{e}_2>\) := \(<\text{p}>\) | \(<\text{t}>\);
\(<\text{p}>\), \(<\text{p}_1>\), \(<\text{p}_2>\), \(<\text{p}_3>\) := \(<\text{placeName}>\);
\(<\text{t}>\), \(<\text{t}_1>\), \(<\text{t}_2>\) := \(<\text{transitionName}>\).

4.1 Invocation a Petri Net

Definition 1. \(\text{invoke}(<\text{N}_1>, <\text{e}>, <\text{N}_2>)\). Let Petri Nets \(N_1\) and \(N_2\) and a name of a designation point \(N_1.e\) of net \(N_1\) be given. Operation \(\text{invoke}(N_1.e, N_2)\) creates a copy \(e.N_2\) of net \(N_2\) and returns value true. The names of all places and transitions of \(e.N_2\) are extended by prefix \(e\).

4.2 Join Operations

Informally a join operation merges two elements of different nets together, so that the resultant element gets the union of the input arcs and the union of output arcs of both initial elements. The merged elements should be of the same type: a place is merged with a place, a transition is merged with a transition.

Definition 2. \(\text{joinToPlace}(<\text{N}_1>, <\text{p}_1>, <\text{N}_2>, <\text{p}_2>)\). Let two Petri nets \(N_1 = (P_1, T_1, F_1, M_1^0)\) and \(N_2 = (P_2, T_2, F_2, M_2^0)\) (Figure 5) be given where

- \(p_1 \in P_1, p_2 \in P_2\);
- \(\bullet p_1\) is the set of input transitions of place \(N_1.p_1\).
 (We follow the traditional notation in Petri Nets \cite{6})
- \(p_1.p\) is the set of output transitions of place \(N_1.p_1\).
- \(\bullet p_2\) is the set of input transitions of place \(N_2.p_2\).
- \(p_2.p\) is the set of output transitions of place \(N_2.p_2\).
- \(\{(t, p_1) | t \in \bullet p_1 \} \cup \{(p_1, t) | t \in p_1.p\} \} \in F_1\).
- \(\{(t, p_2) | t \in \bullet p_2 \} \cup \{(p_2, t) | t \in p_2.p\} \} \in F_2\).

Operation \(\text{joinToPlace}(N_1.p_1, N_2.p_2)\) creates net \(N_3\) and returns value true. The net \(N_3 = (P_3, T_3, F_3, M_3^0)\) (Figure 5) is the following:

- \(P_3 = P_1 \setminus \{p_1\} \cup P_2 \setminus \{p_2\} \cup p_1.p_2\),
 where \(p_1.p_2\) is a new place with name \(p_1.p_2\).
- \(\bullet N_3.p_1.p_2 = \bullet N_1.p_1 \cup \bullet N_2.p_2\) is the set of input transitions of \(N_3.p_1.p_2\).
 Each transition \(t \in \bullet N_2.p_2\) is renamed in \(N_3\) to \(p_1.t\).
- \(N_3.p_1.p_2.p = N_1.p_1 \bullet \cup N_2.p_2.p\) is the set of output transitions of \(N_3.p_1.p_2\).
 Each transition \(t \in N_2.p_2.p\) is renamed in \(N_3\) to \(p_1.t\).
Fig. 5. Operations joinToPlace() and joinToTransition() .

Let two Petri nets \(N_1 = (P_1, T_1, F_1, M_0^1) \) and \(N_2 = (P_2, T_2, F_2, M_0^2) \) be given, such that

- \(t_1 \in T_1; t_2 \in T_2; \)
- \(\bullet t_1 \) is the set of names of input places of transition \(N_1.t_1 \).
- \(t_1.\bullet \) is the set of names of output places of transition \(N_1.t_1 \).
- \(\bullet t_2 \) is the set of names of input places of \(N_2.t_2 \).
- \(t_2.\bullet \) is the set of names of output places of \(N_2.t_2 \).
- \(\{ (p, t_1) \mid p \in \bullet t_1 \} \cup \{ (t_1, p) \mid p \in t_1.\bullet \} \in F_1 \) - is a flow relation of net \(N_1 \).
- \(\{ (p, t_2) \mid p \in \bullet t_2 \} \cup \{ (t_2, p) \mid p \in t_2.\bullet \} \in F_2 \) - is a flow relation of net \(N_2 \).

Operation \(\text{joinToTransition}(N_1.t_1, N_2.t_2) \) creates net \(N_3 = (P_3, T_3, F_3) \) and returns value \(\text{true} \). The net \(N_3 \) is created as follows:

- \(P_3 = P_1 \cup P_2 \);
\[T_3 = T_1 \setminus \{t_1\} \cup T_2 \setminus \{t_2\} \cup \{t_1.t_2\}, \text{ where } t_1.t_2 \text{ is a transition named } t_1.t_2. \]
\[\bullet t_1.t_2 = \bullet N_1.t_1 \cup \bullet N_2.t_2 \text{ is the set of input places of } N_3.t_1.t_2; \]
Each place \(p \in \bullet N_3.t_2 \) is renamed in \(N_3 \) to \(t_1.p \).
\[t_1.t_2 \bullet = N_1.t_1 \bullet \cup N_2.t_2 \bullet \text{ is the set of output places of } N_3.t_1.t_2; \]
Each place \(p \in N_2.t_2 \bullet \) is renamed in \(N_3 \) to \(t_1.p \).
\[F_3 = F_1 \setminus \{(p, t_1) | p \in \bullet t_1\} \cup \{(t_1, p) | p \in t_1\bullet\} \]
\[F_2 \setminus \{(p, t_2) | p \in \bullet t_2\} \cup \{(t_2, p) | p \in t_2\bullet\} \cup (\bullet t_1.t_2 \cup \bullet t_1.t_2\bullet). \]
\[M_0^3 = M_0^1 \cup M_0^2. \]

The definitions of the reverse operations \textit{disjoinFromPlace}(\(N_3.p_1.p_2, N_2.p_2 \)) and \textit{disjoinFromTransition}(\(N_3.t_1.t_2, N_2.t_2 \)) are straightforward and illustrated by the same Figure 5.

4.3 Insert Operation

Insert operations cut the initial net.

Definition 4. \textit{insertToPlace}(\(\langle N_1 >, < p_1 >, < N_2 >, < p_2 >, < N_3 >, < p_3 > \))

\textit{Operation insertToPlace}(\(N_1.p_1, N_2.p_2, N_2.p_3 \)) \textit{creates net } \(N_3 \) \textit{and returns value true. Net } \(N_3 = (P_3, T_3, F_3, M_0^3) \) \textit{is the following:}

\[P_3 = P_1 \setminus \{p_1\} \cup P_2 \setminus \{p_2, p_3\} \cup \{p_1.p_2, p_1.p_3\}, \]
\[T_3 = T_1 \cup T_2; \]
\[F_3 = F_1 \setminus (\bullet N_1.p_1 \cup N_1.p_1\bullet) \cup F_2 \cup \{(t, p_2) | t \in \bullet N_1.p_1\} \cup \{(p_2, t) | t \in N_1.p_1\bullet\}, \]
\[M_0^3: \text{Places from sets } P_1 \text{ and } P_2 \text{ keep their markings.} \]
Place \(p_1.p_2 \) has the marking of place \(p_1 \), place \(p_1.p_3 \) has the empty marking.
Operation \textit{deleteFromPlace}(N_3,p_1*,N_2,p_2^a,N_2,p_2^b) is the reverse operation to the operation \textit{insertToPlace}(N_1,p_1,N_2,p_2^a,N_2,p_2^b).

The principle of symmetry leads us to a definition of operation \textit{insertToTransition}(N_1,t_1,N_2).

This operation is used in hierarchical Petri Nets \cite{5}. The correspondence between all input places of \(N_1.t\) and input places of \(N_2\) and the output places of \(N_1.t\) and output places of \(N_2\) should be specified for this operation. Net \(N_2\) becomes hidden inside transition \(t\). The operation could be used for weaving of a specific aspect, inputs and outputs of which match to inputs and outputs of several transitions.

4.4 Predicates for the language of aspect weaving

The boolean expressions corresponding to operations defined above are the predicates of the language of aspect weaving:

\[
\text{< Invoke}(< N_1 > . < e_1 > . < N_2 >) > :=
\]
\[
\text{invoke}(< N_1 > . < e_1 > . < N_2 >) | \text{invoke}(< N_1 > . < t_1 > . < N_2 >);
\]
\[
\text{< Expr}(< N_1 > . < e_1 > . < N_2 >, < e_2 >) > := \text{true} | \text{false} |
\]
\[
\text{joinToPlace}(< N_1 > . < p_1 > . < N_2 > . < p_2 >) |
\]
\[
\text{joinToTransition}(< N_1 > . < t_1 > . < N_2 > . < t_2 >) |
\]
\[
\text{insertToPlace}(< N_1 > . < p_1 > . < N_2 > . < p_2^a > . < N_2 > . < p_2^b >) |
\]
\[
\text{< Expr}(< N_1 > . < e_1 > . < N_2 >, < e_2 >) \land
\]
\[
\text{< Expr}(< N_1 > . < e_1 > . < N_2 >, < e_2 >) |
\]
\[
\text{< Expr}(< N_1 > . < e_1 > . < N_2 >, < e_2 >) \lor
\]
\[
\text{< Expr}(< N_1 > . < e_1 > . < N_2 >, < e_2 >).
\]

4.5 Weaving expressions of the language for weaving aspects

A weaving expression of the language for aspect weaving is a quantifier over elements of a given net. It has a boolean value. A weaving expression is constructive in the sense that it presents an algorithm of weaving aspects modelled by Petri Nets.

A weaving expression can be specified as follows:

\[
\text{< WE >} := < \forall < N_1 > . < e_1 > > < B(< N_1 > . < e_1 >) >
\]
\[
[< \text{Invoke}(< N_1 > . < e_1 > . < N_2 >) > \land
\]
\[
< \text{Expr}(< N_1 > . < e_1 > . < N_2 >, < e_2 >)] |
\]
\[
< \text{WE} > \land < \text{WE} > | < \text{WE} > \lor < \text{WE} >;
\]
\[
< B(< N_1 > . < e_1 >) > : = < N_1 > . < e_1 > = < \text{placeName} > | < N_1 > . < e_1 > = < \text{transitionName} > | < N_1 > . < e_1 > \in < \text{setName} >;
\]

The quantifier \text{< WE >} means "for all elements \(e_1\) of net \(N_1\) such that the boolean expression \(B(N_1,e_1)\) is \text{true} net \(N_2\) representing an aspect is invoked and joined (inserted) to element \(N_1,e_1\) such that \text{Expr} is \text{true}".

Some useful quantifies are composed from the operations defined above, for example, \text{insertAfterTransition()} and \text{insertBeforeTransition()}.
Definition 5. Operation $\text{insertAfterTransition}()$

$\text{insertAfterTransition}(N_1.t, N_2.t, N_2.p^a, N_2.p^b) ::= \forall p : p \in N_1.t \bullet [\text{invoke}(N_1.p, N_2) \land \text{insertToPlace}(N_1.p, N_2.p^a, N_2.p^b)].$

Definition 6. Operation $\text{insertBeforeTransition}().$

$\text{insertBeforeTransition}(N_1.t, N_2.t, N_2.p^a, N_2.p^b) ::= \forall p : p \in \bullet N_1.t [\text{invoke}(N_1.t, N_2) \land \text{insertToPlace}(N_1.p, N_2.p^a, N_2.p^b) \land \text{joinToTransition}(N_1.t, N_2.t)].$

The general expression for a designator when quantifying on a set of nets is the following:

\[
< D > ::= \forall N \in < N_1 > [< \text{WE} >];
\]

\[
< B(< N_1 >) > ::= < N_1 > = < \text{name} > | < N_1 > \in < \text{setName} >;
\]

"for all nets such that predicate $B(N_1) = \text{true}; \text{WE} = \text{true}".

5 Transformation of Models in Aspect Petri Nets

In this section we illustrate transformation from CIM to PIM and from PIM to PSM on the example of our Internet shop described in Section 2.

5.1 Logging concern

The logging concern is modelled by Petri Net Logging (Figure 7) that consists of only one transition write and one place log with an arc from write to log. Transition write models writing to a log-file. Place log collects the results of logging.

To weave the logging concern and the CIM of the Internet shop shown in Figure 1 we use the following weaving expression:

\[
\text{D(Service, Logging)} : \forall \text{Service}.t :
[\text{invoke(Service}.t, \text{Logging}) \land \text{joinToTransition(Service}.t, \text{Logging}.write)];
\]

The expression in our language is constructive, i.e. it describes an algorithm of weaving:

Let nets Service and Logging are given.

For all transitions t of net Service repeat:

1. Make a copy $t.\text{Logging}$ of net Logging and extend names of all its elements by prefix t.
2. Join transition t to transition $t.\text{write}$ of net $t.\text{Logging}$.

Figure 7 shows the result of weaving the logging aspect with net Service according to the defined designator. Each firing of transition $\text{Service}.t$ produces a log-record, modelled by the corresponding place $t.\text{log}$.
Fig. 7. Concern of logging of events.

Fig. 8. Concern of cancelling.
5.2 Cancelling concern

The cancelling aspect is modelled by Petri Net Cancel shown in Figure 8. This net has only one transition Cancel. This transition has one input place named input and two output places initial and capacity. The weaving of Petri Net Cancel with Petri Net Service is specified by the designator:

\[D(\text{Service}, \text{Cancel}) : \forall \text{Service.p} : (\text{Service.p} = \{\text{choice, chosen}\}) \]
\[\text{invoke} (\text{Service.p}, \text{Cancel}) : \text{joinToPlace} (\text{Service.client, Cancel}.\text{input}) \land \text{joinToPlace} (\text{Service.instance, Cancel}.\text{capacity}) \];

The weaving procedure defined by this expression is the following:
For places \(p = \text{choice} \) and \(p = \text{chosen} \) repeat:
1. Make a copy \(p.\text{Cancel} \) of net Cancel and extend names of all its elements by prefix \(p \).
2. Join place \(p \) to place \(p.\text{input} \) of net \(p.\text{Cancel} \); place \(\text{client} \) to place \(p.\text{initial} \); place \(\text{instance} \) to place \(p.\text{capacity} \).

Figure 8 represents the result of weaving according such a designator. Each place of the former net Service gets an alternative to return the net into its initial marking. Nets Cancel and Service are traceable in the result of weaving.

5.3 PSM in Aspect Petri Nets

![Fig. 9. Service Request.](image)

The PSM contains the service request concern. A service is requested for two transitions: look and pay. An aspect of request is modelled by net Request...
shown in Figure 9. The model of the aspect is reusable. The weaving expression for this aspect uses operation \texttt{insertBeforeTransition}:

\[
D(\text{Service, Request}) :\]

\[
\forall \text{Service.p} : (\text{Service.p} \in \bullet \text{Service.t}_1 \land \text{Service.t}_1 = \{\text{look, pay}\})
\]

\[
\land \text{invoke(Service.p, Request) \land insertBeforeTransition(Service.t}_1, \text{Request.permit, Request.in, Request.service})].
\]

The weaving procedure defined by the weaving expression is the following:

For transitions \(t=\text{look} \) and \(t=\text{pay} \) repeat:

1. Make a copy \(t.\text{Request} \) of the aspect net \(\text{Request} \);
2. For all input places \(p \in \bullet t \) of transition \(t \):
 2.1. split place \(p \) in two places: \(p^a, p^b \), such that input arcs belong to place \(p^a \) and output arcs belong to place \(p^b \);
 2.2. join place \(p^a \) to place \(t.\text{Request.in} \), join \(p^b \) to \(t.\text{Request.service} \);
3. Join transition \(t \) to transition \(t.\text{Request.permit} \);

The result of weaving is shown in Figure 9. This model can be used for simulation of the Request concern.

6 Conclusion and Future Work

The MDA approach to system modelling provides obvious advantages for designers and companies: it allows building reusable models and portable applications. MDA can be successfully applied to different design notations used in specific fields, however the mechanisms of model transformations in those notations should guarantee separation of concerns and traceability of design decisions. In this paper we have adapted Petri Nets for MDA application. We have extended Petri Nets by aspects and weaving mechanisms for aspects. Our new notation named Aspect Petri Nets is suitable for application of MDA because the design decisions represented by weaving expressions are traceable and models of different levels of abstraction are retrievable and reusable.

Aspect Petri Nets provide a unified mechanism both for composition of Petri Nets and for weaving of aspects, because composition is a specific case of weaving where composed nets are invoked only once.

We are going to implement tool support for MDA approach to modelling in Aspect Petri Nets. The most difficult part for designers is writing weaving expressions. For this error-prone activity an expression builder is designed to provide the lists of nets and operations and to make syntax checks using the grammar of the weaving language defined in this paper. We are going to implement a module for specification and verification of weaving correctness and a module for constructing simulation models using weaving rules.

Investigation of join point model and dynamic weaving mechanisms for Coloured Petri Nets is considered as future work.
References