
FP-Block : usable web privacy
by controlling browser fingerprinting

Christof Ferreira Torres1, Hugo Jonker2 and Sjouke Mauw1

1 CSC/SnT, University of Luxembourg
2 Open University of the Netherlands

Abstract. Online tracking of users is used for benign goals, such as de-
tecting fraudulent logins, but also to invade user privacy. We posit that
for non-oppressed users, tracking within one website does not have a
substantial negative impact on privacy, while it enables legitimate bene-
fits. In contrast, cross-domain tracking negatively impacts user privacy,
while being of little benefit to the user.
Existing methods to counter fingerprint-based tracking treat cross-domain
tracking and regular tracking the same. This often results in hampering
or disabling desired functionality, such as embedded videos. By distin-
guishing between regular and cross-domain tracking, more desired func-
tionality can be preserved. We have developed a prototype tool, FP-
Block, that counters cross-domain fingerprint-based tracking while still
allowing regular tracking. FP-Block ensures that any embedded party
will see a different, unrelatable fingerprint for each site on which it is
embedded. Thus, the user’s fingerprint can no longer be tracked across
the web, while desired functionality is better preserved compared to ex-
isting methods.

1 Introduction

Online activities play an ever-growing role in everyday life. Consequently, com-
panies are increasingly tracking users online [14]. There may be various reasons
for such tracking, such as fraud prevention by identifying illegitimate usage at-
tempts [16], suggesting related content, and better targeting advertisements.
Where such tracking remains confined to the tracker’s own website, the balance
between privacy and functionality is (arguably) satisfied: the website learns a
user’s browsing habits on that particular website, which helps to improve the
website for this user. We will call this type of tracking regular tracking.

However, some companies offer online services that are embedded on a large
number of websites. Examples of such services are social sharing buttons, popular
JavaScript libraries, and popular web analytics services. Thanks to this ubiqui-
tous embedding, such companies can track users over large portions of the web.
According to various studies, plenty of different companies are embedded on a
sizable3 portion of the Web. For example, consider the Facebook “Like” button.

3 E.g. penetration rates for top 1 million sites according to BuiltWith.com (October
2014): DoubleClick.net 18.5%, Facebook Like button 15.6%, Google Analytics 46.6%

1

The embedding site includes a piece of code that triggers the user’s browser to
contact the Facebook servers to download the button. As browsers are made to
explain where a request originated (the HTTP Referer field), the browser will
tell Facebook exactly which URL triggered this request each time. This enables
Facebook to track the user across the web [15], irrespective of whether or not the
user even has a Facebook account. We will call this type of tracking third-party
tracking.

This tracking can be done using an HTTP cookie, but even if such (third
party) cookies are blocked, it is possible to infer a set of attributes (screen
resolution, HTTP user agent, time zone, etc.) that are often sufficient to uniquely
identify the user [5]. Note that such attributes were intended to benefit the user,
e.g. to present her the mobile version of a site when browsing from a phone, or
to present the page in the user’s preferred language. Yet even though personalia
such as name or age are not explicitly revealed, the tracker can learn far more
about the users than one realises4.

Identifying users by such means is called “fingerprinting”. Much like a fin-
gerprint belongs to one unique individual, a fingerprint of communication with
a server belongs to a unique browser.

Existing countermeasures combat such fingerprint-based tracking with little
regard for the impact on the the user experience. The goal is then to find an
approach that ensures a better balance between user experience (that is: less
impact on desired embedded contents) and tracking. We address this with the
concept of web identity : the set of fingerprintable browser characteristics. A
web identity is generated for the main site visited (e.g., bbc.com), and that
identity is then also used for all interaction with embedded contents on that site
(e.g. videos, social media buttons, etc.). If the user visits a different site (e.g.,
cnn.com), a different identity is used (the web identity for cnn.com). Thus, a
party embedded on both sites will first see the web identity for bbc.com, and
later the web identity for cnn.com. As we ensure that the generated identities
are distinct, the two visits can no longer be linked by means of their fingerprint.
We focus on fingerprinters that aim to re-identify as many users as possible. We
do not target tools that are seeking to track any one specific individual.

Contributions. The main contributions of our research are the following:

1. We argue that a distinction be made between regular and cross-domain track-
ing; we observe that current anti-tracking tools do not make this distinction.

2. We introduce the notion of a web identity to generalize the rather dynamic
notion of a fingerprint. We propose separation of web identities as an ap-
proach to fingerprint privacy that prevents cross-domain tracking, while al-
lowing regular tracking.

3. We have developed a prototype browser extension, FP-Block, that supports
the automatic generation and management of web identities. A user’s web
identity remains constant across all his visits to the same domain, while his

4 E.g. by data aggregation, a supermarket can infer if a customer is pregnant, and
estimate her due date (Forbes.com, 2012).

2

http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/

web identities for different domains are not related. The tool has a user inter-
face that shows which third parties are embedded in the current page, which
fingerprintable attributes are requested by the website and how these are
spoofed by the tool. This allows the user to fine-tune the tool for individual
sites.

4. By deobfuscating the code of the most relevant fingerprinters, we compiled
an up-to-date list of the attributes used by current fingerprinters. Further,
based on a literature study, we compiled a list of the attributes affected
by the most relevant anti-tracking tools. These lists guided our design and
helped us to compare our work to existing tools.

5. We have tested our tool against six fingerprinters in two different scenarios:
first-party fingerprinting and third-party fingerprinting. In all cases, our tool
was successful in affecting the computed fingerprint.
As final validation, we tested our tool against a commercial fingerprinter’s
online tracking ID. Again the tool was successful: the tracking ID without
the tool was different from the ID when running the tool.

2 Related work

We distinguish related work between work on fingerprinting and work on coun-
termeasures against tracking and fingerprinting.

2.1 Fingerprinting

The possibility of remotely inferring characteristics of devices has been known
for some time. E.g. Kohno et al. [6] use TCP clock skew to remotely fingerprint
devices. Eckersley [5] was the first to draw significant attention to the problem
of fingerprinting web browsers. His fingerprinting algorithm returned a unique
fingerprint for 83.6% of the browsers considered. Subsequent papers established
how to fingerprint other aspects such as the user-agent string and IP address [17],
the HTML5 “canvas” element [10], the used Javascript engine [9,11]), the fonts
present [3], etc. Other work has suggested approaches to combine several fin-
gerprintable attributes to arrive at unique fingerprints (e.g. [3,17]). Using such
techniques only on one site does not constitute a large invasion of privacy. How-
ever, as Mayer and Mitchel [8] and Roosendaal [15] have pointed out, social
plugins are embedded on many pages, which allows the social network to track
users across the Internet. Thanks to fingerprinting, such tracking does not even
require an account – anyone with a unique fingerprint can be traced.

Several recent studies have investigated the practice of fingerprinting in more
detail. Acar et al. [2] introduced a framework to detect online fingerprinters by
detecting activities typical of fingerprinters (e.g. requesting values of certain
attributes, enumerating fonts, etc.). Their detection algorithm found several fin-
gerprinting techniques in action. Many of these were by companies offering fin-
gerprinting services to others: the fingerprinters were either embedded by the
visited site, or by a third party such as inside a third-party advertisement. In

3

a followup study, Acar et al. [1] investigate the spread of three tracking mecha-
nisms, amongst which HTML5 canvas fingerprinting. They propose three heuris-
tics to estimate whether a canvas is being used to fingerprint; we adopt these
criteria in our tool. This paper also shows that canvas fingerprinting is being
used by a popular 3rd party service (AddThis.com). Nikiforakis et al [13] pro-
vide a detailed study of the fingerprinting techniques of three online fingerprint
services (BlueCava, Iovation and ThreatMetrix). They found that fingerprinting
can be tailored to the detected browser, e.g. when detecting a browser as Inter-
net Explorer, the fingerprint would include Internet Explorer-specific attributes.
Moreover, Flash was used by all three to enrich the established fingerprint. Flash
allows access to many similar attributes as JavaScript, but may give a more de-
tailed response (e.g. including major and minor kernel version number). More-
over, Flash ignores a browser’s proxy settings for client-server communication.
This allows the fingerprint services to detect if the user is behind a proxy or not,
and correlate the IP address of the proxy with that of the user.

2.2 Countermeasures

Several existing plugins directly aim to stop trackers, including commercially
developed ones (e.g. Ghostery, AVG Do Not Track, etc.), and academically de-
veloped ones, such as FireGloves [3], ShareMeNot [14], PriVaricator [12], etc.
Some of these work by blocking trackers, either by using a predefined blacklist
or by updating the blacklist on the fly using heuristic rules. Krishnamurthy and
Wills [7] argue that blacklists are prone to being incomplete (not all trackers
blocked), and therefore ultimately fail at blocking trackers. A similar argument
holds against heuristically updated blacklists: the next tracker may well use
tracking methods not covered by the heuristics, and so escape notice. More
damning, however, Mowery et al. [9] show how an attacker can detect a blacklist
and use its content as an additional fingerprintable attribute.

Other plugins work by faking attributes (FireGloves, PriVaricator). As [5,13]
point out, such spoofing may lead to inconsistencies that paradoxically make the
user stand out more. Indeed, Acar et al. [2] argue this is the case for FireGloves-
equipped browsers. Even more strongly, Nikiforakis et al. [13] advice against the
use of any user-agent-spoofing extension.

We add the following observations. First of all, fingerprinting can be done
both passively and actively. Passive fingerprinting uses attributes inherent in
the communication (e.g. the order of HTTP headers), while active fingerprinting
executes attribute-gathering scripts on the client-side (e.g. determine JavaScript
engine speed). Anti-tracking tools should take into account both mechanisms.
Secondly, anti-tracking tools should consider “fingerprint consistency”, i.e., the
extent to which a fingerprint is perceived as genuine. By carefully tailoring the
spoofing system to account for known fingerprinters, their consistency checks
can be satisfied. Secondly, fingerprinting trackers take a fingerprint of each user,
and aim to link a new fingerprint to an existing fingerprint. If the new fingerprint
is sufficiently different, this link cannot be made – irrespective of how unique
this new fingerprint is. PriVaricator [12] uses similar ideas to these. In contrast,

4

our approach addresses both active and passive fingerprinting, uses real-world
browser statistics to generate consistently spoofed fingerprints, and works as a
browser extension instead of modifying the browser itself.

The Tor Browser5, widely recognised as providing the best privacy, uses an-
other approach: it aims to keep one single set of attribute values across all its
instances. In ideal circumstances, this means that no two Tor Browser instances
can be distinguished from each other, however, users can install plugins or tweak
settings which undo this protection.

The Tor browser is strongly focused on preserving privacy, providing a level of
privacy believed to be sufficient for use under intense state scrutiny. This strong
privacy comes at the expense of some usability, most notably, that all data is
sent via an onion routing network. We posit that the strong privacy offered by
the Tor Browser exceeds the needs of non-oppressed users. Therefore, we will
focus on the prevention of third-party tracking.

3 Determining the Fingerprint Surface

In this section, we determine the relevant set of characteristics that are used
to fingerprint a user. Determining the full set of characteristics, the fingerprint
surface, is not practically possible. For example, as a plugin can change the
browser’s behaviour in ways that can be detected, constructing a complete set
of characteristics necessarily requires examining all browser plugins. Therefore,
we focus pragmatically on that part of the fingerprint surface that is being
used by fingerprinters. This implies that we use their definition of identity. As
fingerprinters equate a fingerprint of the device with a user identity, we will use
this (somewhat imprecise) abstraction as well.

To establish the fingerprint surface, we determine for four major commercial
fingerprinters which characteristics they use to fingerprint, i.e., their fingerprint
vector. We also examine four major anti-fingerprint tools and determine which
part of the fingerprint surface they consider. Together, this gives us a practical
approximation of the fingerprint surface. FP-Block then is built to ensure no
two fingerprints are fully coincide within this approximation.

3.1 Limitations of Preventing Fingerprint Tracking

There are two approaches to prevent fingerprint-based tracking: blocking track-
ers, and spoofing attribute values. However, neither by itself suffices to prevent
tracking, while both impact user experience.

Blocking fingerprinters. A naive solution is to block any third party content.
However, many webpages embed such content, without which the webpage ren-
ders incorrectly (e.g. content delivery networks, embedded video). Other third
party content helps to sustain and improve the site (counters, advertisers, an-
alytics,. . .). The impact of blocking all third party content on usability will be

5 https://www.torproject.org/projects/torbrowser.html.en

5

https://www.torproject.org/projects/torbrowser.html.en

far too great. Blocking known major trackers would provide some protection.
However, such a list will remain incomplete [7], irrespective of updates. Thus,
blocking by itself cannot fully address third party tracking without impacting
on desired functionality.

Spoofing attribute values. The attribute values that make up the fingerprint may
be faked. This changes the fingerprint, which in turn changes what the tracker
infers as the identity. There are many browser plugins that randomise a (sub)set
of attributes. However, not all attributes can be faked without substantially
impacting user experience (e.g. JavaScript engine speed). Moreover, faked data
often makes the user’s fingerprint stand out more [5,13], making the fingerprint
more easy to recognise. Finally, new fingerprintable characteristics keep on being
discovered. Thus, it is impossible in practice to determine and spoof the full set
of fingerprintable characteristics.

Thus, determining the entire fingerprint surface is impossible. As such, no anti-
fingerprint tool can prevent all fingerprinting. This motivates a pragmatic ap-
proach: determine which characteristics are used by a set of fingerprinters, and
focus on those.

3.2 Fingerprint Vectors

To determine which characteristics are commonly used to fingerprint users, we
determine the fingerprint vectors of several widely-used fingerprinters. We an-
alyze three commercial trackers: BlueCava (BC), IOvation (IO), and Threat-
Metrix (TM). Note that this part of our analysis builds on and expands the
results of [13]. We furthermore analyze one social plugin that fingerprints users:
AddThis (Add). We complement this with characteristics gathered from Ecker-
sley’s seminal work [5] (Pan) and from an open source fingerprint library, Fin-
gerPrintJS (FPjs). The results are presented in the left part of Table 1 (legend
and footnotes in Table 2).

In Table 1, each row denotes a fingerprintable characteristic. A
√

sign indi-
cates that the fingerprinter uses this characteristic in determining a fingerprint.
Characteristics marked with X were previously reported in [13]; those marked
with were reported, but are no longer used.

Recall that in this work we only target the HTTP and JavaScript layer of
the communication stack. Fingerprinting can also occur at other layers, e.g. at
the TCP/IP layer, or at the Flash layer.

For FP-Block we only address HTTP and JavaScript characteristics that are
used by one ore more of the six analyzed fingerprinters.

3.3 Fingerprint Surface

To determine the minimum set of characteristics that needs to be protected, we
investigate four popular anti-fingerprinting tools: FireGloves [3] (FG), the Tor

6

Fingerprinters Countermeasures

Attribute Pan B
C

IO T
M

A
dd

FPjs
FG Tor PV R

A
S
F
P
B

Plugin Enumeration X X 4 X 4 4 4 4 4 4

Font Detection X X X 4 4 4 4 4

User-Agent X X X X 4 4 4 4 4 4 1

HTTP Header Accept X 1,5

HTTP Header Accept-Charset X 4 1,5

HTTP Header Accept-Encoding X 4 4 1

HTTP Header Accept-Language X 4 4 4 1

Screen Resolution X X X X 4 4 4 4 4 4

Timezone X X X X 4 4 4 4 4 4

Browser Language X X 4 4 4 4

OS & Kernel Version 4 4 X 4 4 4 4 4 4

DOM Storage X 4 4 4 4 4 4 4

IE userData X 4 2

Java Enabled 4 4 4

DNT User Choice 4 4 4 4 1

Cookies Enabled X 4 4 1

JS detect: Flash Enabled X X X X 4 4 4

ActiveX + CLSIDs X X X 4 4 2

Date & Time 4 X 4 4 5

CPU 4 4 4 4 4 4

System/User Language X 4 4 4 2

OpenDatabase 4 4 4 4

Canvas Fingerprinting 4 4 4 4 4

Mime-type Enumeration X X 4 4 4 4

HTTP Proxy Detection X X 4

IndexedDB 4 4 4

Math Constants X 4 5

Windows Registry X X 3

TCP/IP Parameters X X 4 1

Google Gears Detection X 4

Flash Manufacturer X 4

MSIE Security Policy X 2

AJAX Implementation X 5

MSIE Product key X 3

Device Enumeration X 3

Device Identifiers X 3

IP address X 4 1

HTML Body Behavior 4 2

Battery 4 4 4

WebGLRenderingContext 4 4 4 4

X: Attribute previously reported in [13].
: Attribute previously reported, but no longer present.

Table 1. Comparison of attributes used by various fingerprinting libraries.

7

Fingerprinters Updated from Countermeasures
Pan Panopticlick [5] [13] FG FireGloves [3]
BC BlueCava [13] Tor Tor [4] Browser Bundle
IO Iovation [13] PV PriVaricator [12]
TM ThreatMetrix [13] RAS Random Agent Spoofer
Add AddThis new FPB FingerPrint-Block
FPjs FingerPrintJS new

1 Property can be checked passively, i.e., no client-side technology required.
2 Property specific to Internet Explorer.
3 Property is determined using a Windows DLL created by the fingerprinting company.
4 Out of scope – FP-Block only targets HTTP and Javascript layers.
5 Blocking or spoofing this attribute would break or limit important functionality.

Table 2. Legend and footnotes for Table 1

Browser (Tor), PriVaricator [12] (PV), and Random Agent Spoofer6 (RAS). For
each, we determine which characteristics are considered. The results are listed
on the right side of Table 1.

Not all characteristics are equal: some can be used by the fingerprinter with-
out using JavaScript (e.g. HTTP headers), some are specific to Internet Explorer,
others require additional client-side software (e.g. Windows DLL), etc. For the
implementation, we do not focus on these characteristics. Furthermore, some
characteristics are intrinsic to the communication or the user experience (HTTP
accept header, date & time), and cannot be blocked or spoofed without adverse
effects. Taken together, these considerations lead us to formulate the intended
fingerprint surface of our tool FP-Block in the rightmost column of Table 1.
Consequently, FP-Block only generates web identities which are distinct with
respect to this fingerprint surface.

4 Design

Our goal is to prevent third-party fingerprint-based tracking. To this end, we
generate distinct web identities (i.e., sets of fingerprintable characteristics) and
then use these web identities in such a fashion as to be untraceable. More pre-
cisely, for each new site visited, we use a freshly generated web identity that is
distinct from all previous web identities. This web identity is then used for all
interactions due to this site, be they with the site itself or with any of its third
parties.

4.1 Balancing Usability vs. Privacy

The approach of separating web identities is not meant to interfere with reg-
ular tracking (tracking by the main site itself). It even allows third parties to

6 https://github.com/jmealo/random-ua.js

8

https://github.com/jmealo/random-ua.js

a. Normal situation. b. Separating web identities.

Fig. 1. Third-party fingerprinting.

track a user on a particular site – but it prevents third parties from linking
that user to another user on a different site. Thus, this approach has the ad-
vantage that it does not affect local login processes, nor is it affected by such a
process. Moreover, third parties that embed site-specific codes (e.g. of the form
http://facebook.com/FROM-SITE-A/) are free to do so. We remark that the
defensive paradox, i.e. defenses make the user stand out more, strongly impacts
regular tracking. With regards to third-party tracking, however, there is a great
difference. Our approach focuses on linkability between different sites, not on
distinguishing users on one site. A user that stands out on one website is not
necessarily the same person as a user that stands out on another website, even
if both stand out due to the defensive paradox. Hence, third-party tracking is
affected less severely by the defensive paradox.

The approach of separating web identities thus stays very close to a normal
user experience. However, when visiting a different site, a different web identity is
used, and the user cannot be tracked to this new site by third-party fingerprint-
based tracking. Figure 1a depicts the normal functioning of the web: embedded
third parties (shown by the dashed arrows) can fingerprint the site’s visitors and
match a fingerprint on site A to a fingerprint on site B. Figure 1b depicts our
approach: each website visited sees another fingerprint. Consider that sites A
and C embed a social media plugin of site B. Then when the user visits site A,
the web identity as seen by B is IDA. When the user visits site C, however, the
web identity as determined by B is IDC . Finally, if the user visits B directly, yet
another web identity is used. This allows B to track the user locally on site A
and on C, but not from site A to C.

9

4.2 Generating Web Identities

To prevent fingerprint-based tracking, we need to ensure that two distinct web
identities are seen as different by a fingerprinter. This is not necessarily as
straightforward as it may seem: computers and browsers are regularly updated
(changing their characteristics), and fingerprinters need to account for this. Thus,
merely ensuring that the set of characteristics of one web identity do not coincide
with any other web identity is not sufficient. Moreover, we recall the fingerprint-
ing countermeasure paradox: the use of a countermeasure impacts fingerprint-
able characteristics in such a way that the resulting set of characteristics is more
unique (thus, more traceable) than if no countermeasure was used. An example
of this is a client that claims to be an iPhone 2, that is capable of running Flash
(real iPhones do not run Flash).

This leads to two design requirements: web identities must be “enough” dif-
ferent, and a generated web identity must be “consistent”.

Ensuring sufficient difference. Updating a browser affects browser-specific at-
tributes, updating the operating system affects OS-specific attributes, etc. To
ensure a freshly generated web identity is sufficiently different from previously
generated web identities, accounting for anticipated updates, we group the at-
tributes into the following classes:

– Browser, e.g. user agent, browser name, vendor, accept-encoding.
– Language, e.g. language, system language, user language.
– OS/CPU, e.g. platform, cpu class, oscpu.
– Screen, e.g. width, height, color depth.
– Timezone. i.e. time zone offset.

Ideally, a freshly generated web identity is different in all classes to all previous
web identities. This impacts the time required to generate a new web identity.
For FP-Block, we chose to require every newly generated web identity to have
at least two different attributes from at least two different classes. This allows a
decent trade off between time needed to generate a web identity and uniqueness.
In future versions, the generation algorithm could be optimised to require more
differences.

Consistency of web identity. A randomly generated web identity is unlikely to
be consistent, that is, have no contradictory attributes (such as Flash running
on an iPhone). To ensure consistency, web identities need to be generated us-
ing a realistic distribution of attribute values. For instance, the chance that a
Firefox user is on a Linux computer is greater than the chance that an Internet
Explorer user is. In effect, the process to generate a consistent web identity can
be modelled as a Markov chain. As usage of different browsers and operating
systems varies over time, such a Markov chain needs to be updatable to remain
current. To this end, we identified classes of states (operating system, processor,
screen properties, etc). Any Markov chain for a web identity needs to contain
these classes. Moreover, these can be ordered (operating system and processor

10

Fig. 2. Generic model of Markov chains for web identities.

are determined before the user agent is). In this way, we model a construction
process for Markov chains generating web identities (see Fig. 2).

States and transition probabilities for Markov chains are derived from J. Mealo’s
data7, based on actual usage statistics from Wikimedia. An excerpt of this data
is shown in Table 3, and an example of how this translates into a Markov chain
is shown in Fig. 3. In this figure, where no weights are indicated, the uniform
distribution is implied. Remark that for windows operating systems, one of the
attribute values for processor is the empty string ‘’.

Win Mac Linux

chrome .89 .09 .02
firefox .83 .16 .01
opera .91 .03 .06
safari .04 .96
iexplorer 1.00

Platform Processor string probability

Linux ‘i686’: .5
‘x86 64’: .5

Mac ‘Intel’: .48
‘PPC’: .01
‘U; Intel’: .48
‘U; PPC’: .01

Windows ‘’: .3̄
‘WOW64’: .3̄
‘Win64; x64’: .3̄

Table 3. Example attribute distributions, due to J. Mealo

5 Development and Implementation

5.1 Development

We developed FP-Block as a Firefox plugin. This ensures that FP-Block is pub-
licly available and easy to install for a large group of users. To limit the scope of

7 https://github.com/jmealo/random-ua.js/commits/master/random_ua.js

11

https://github.com/jmealo/random-ua.js/commits/master/random_ua.js

Fig. 3. Partial Markov chain for web identities for the Chrome profile.

the project, FP-Block focuses on two communication layers: JavaScript, illustrat-
ing application of our approach to active fingerprinting, and HTTP, illustrating
application to passive fingerprinting. In principle, tracking at other layers was
not considered. An exception to this was made for Flash: all commercial finger-
printers use Flash to fingerprint and store information. To be effective, the tool
hides Flash (i.e., removed from detected plugins). Another exception is made
for ActiveX. As FP-Block does not include a full ActiveX implementation, it
cannot consistently pretend to be an Internet Explorer browser. Therefore, FP-
Block never pretends to be Internet Explorer. Finally, FP-Block is designed for
desktop browsers, and simulates only desktop browsers.

FP-Block is available from http://satoss.uni.lu/software/fp-block/,
and is open source8.

5.2 Implementation

FP-Block intercepts and modifies all outgoing requests and incoming responses.
This is done by adding observers for the “topics” http-on-modify-request

and http-on-examine-{cached-}response, respectively. For requests, first the
existing web identity for the domain is retrieved, or, if none exists, a fresh web
identity is generated and stored. Then HTTP headers like Accept-Encoding and
Accept-Language are set according to the web identity. E-tag headers (which
are intended to aid caching) can easily be exploited to track users, and are
thus deleted (cf. Table 1). Finally, requests for social plugins that are explicitly
blocked by user preference are cancelled. Currently, FP-Block can block the so-
cial plugins of Facebook, Twitter, Google Plus, LinkedIn, Tumblr, and Pinterest.

For incoming responses, the observer evaluates the fingerprint and constructs a

8 Source available from GitHub repository FP-Block under the GPL v3 license.

12

http://satoss.uni.lu/software/fp-block/

Javascript script that enforces the fingerprint. Blocking access to blocked and
spoofed attributes is handled by replacing the access functionality of Javascript
using navigator. defineGetter (), for attributes such as userAgent, appName,
cookieEnabled, battery, geolocation, oscpu, etc (cf. Table 1). Screen prop-
erties are protected analogously using screen. defineGetter (). Detection
events are inserted in a similar way to detect when scripts use code that is typ-
ically used to fingerprint the user, such as enumerating mimetypes or plugins,
using DOM storage, font detection, etc. Canvas fingerprinting is thwarted by
adding random noise and the FP-Block logo to a random position on the can-
vas. This is then stored with the fingerprint to be reused in future visits. Finally,
a few lines are added to remove the constructed script after execution, using
removeChild() on the script’s parent node. This ensures that the script cannot
be found in the source by other scripts.

The thusly constructed script is then injected into the response at the very
top, ensuring it is run before any other script sent by the server.

6 Experiments and Validation

We tested FP-Block in two different settings:

– First-party fingerprinting : the visited site uses fingerprinting, and
– Third-party fingerprinting : the visited site embeds a third-party fingerprinter.

We ran three main variations of the tests:

1. without FP-Block.
This is to verify that the test setup is functioning correctly.

2. with FP-Block,
a. with the test site using an open source fingerprinting script, FingerPrintJS.

This allows us to verify that FP-Block affects fingerprinting.
b. with the test sites using any one of the four commercial fingerprinting

scripts.
This is to test the effectiveness of FP-Block against real-life fingerprinters.

We updated each fingerprinting script to add the fingerprint it computed to the
test page. This allows us to execute the tests as described by simply opening the
test sites in a browser (see e.g. Fig. 4).

Test 1: first-party fingerprinting. After successfully verifying that the test was set
up correctly (Fig. 4a), we executed the test shown in Fig. 4b using FingerPrintJS.
The result was that FP-Block correctly ensures that a browser visiting the two
sites has a different fingerprint on each site.

Test 2: embedded fingerprinting. We created a test page on site A which embeds
fingerprinting content from site B, and vice versa (cf. Fig. 1). Both test sites
also ran the same fingerprint scripts locally. We then visited each page with and

13

a. Test case 1: no FP-Block. b. Test case 2: with FP-Block.

Fig. 4. First party fingerprinting tests.

without our tool. In both cases, we first tested this set up with the FingerPrintJS
script.

Without FP-Block ’s protection, the fingerprint is the same in all cases (cf. Fig.
1a). With FP-Block, however, this changes (Fig. 1b). The fingerprint script run-
ning on site A sees web identity IDA if the user visits A, but if the user visits B
(which embeds the script from A), the same fingerprint script sees web identity
IDB . The script returns different fingerprints for these web identities.

Testing against commercial fingerprinters. We then repeated tests, using the
fingerprint scripts of the commercial fingerprinters (BlueCava, IOvation, Threat-
Metrix, and AddThis). These scripts all compute a hash which seems to serve
as the fingerprint. However, each of them also communicates the entire set of
attributes and values used in this fingerprint back to the fingerprinter’s servers.
Our tests showed that, without FP-Block, the hash as computed by each script
does not change – the behaviour is equivalent to that in Fig. 1a. With FP-Block,
the hashes were different if they were computed by B’s script embedded on site
A, or by the same script of B computed when visiting site B. In short, the tests
show that FP-Block successfully affects the fingerprint.

However, affecting the fingerprint does not necessarily mean that tracking
is stopped. Given that commercial fingerprinters communicate the determined
attribute values back to the fingerprinter, the fingerprinter may match such a set
offline to previously seen sets. To test whether FP-Block is able to prevent such
offline fingerprinting, we need to know the web identity which the fingerprinter
attributes to us.

BlueCava provides such a service (the BlueCava advertising ID, available on
BlueCava’s “opt-out” page). Our final validation was to check our BlueCava
advertising ID with and without FP-Block. The ID changed, which leads us to
conclude that FP-Block successfully prevented BlueCava from tracking us. As
can be seen in Table 1, BlueCava uses the most attributes for its fingerprint

14

– they are by far the most advanced fingerprinters listed. As such, we believe
that success against BlueCava provides a good estimate of success against other
offline fingerprint algorithms.

Update frequency of fingerprinters. Finally, we monitored the rate of change of
fingerprinters listed in Table 1. We downloaded each fingerprinter’s script once
an hour from September 2014 until June 2015. In this period, Panopticlick’s
script did not change. The open source script FingerPrintJS changed once, which
turned out to be support for detecting screen orientation.

With respect to the commercial fingerprinters: the scripts of BlueCava and
AddThis have not changed since we began monitoring them. The scripts for
IOvation and ThreatMetrix include time and date of the download, ensuring
that every downloaded script is different. Since both scripts are heavily obfus-
cated, verifying that there are no changes other than embedded time and date
is difficult. However, the file size of IOvation’s script remained constant since
September 2014. We take this as an indication that the script has not changed.
Finally, ThreatMetrix’ script started changing on 27 October, 2014, and still con-
tinues to evolve swiftly. An initial analysis revealed that there are large changes
to the code base. Once ThreatMetrix seems to be more stable, we intend to
re-analyse the new code.

Stability and compatibility testing. To determine the robustness of our plugin,
we have been using the plugin in our main browser since June 2014. Where early
versions occasionally crashed or gave unexpected results, since October 2014
only Javascript-heavy and Flash pages are noticeably affected. FP-Block blocks
Flash to prevent Flash side channels, but Flash can be enabled in FP-Block ’s
menu. Javascript-heavy pages are slow to load. A refresh solves this.

Lastly, we tested how the plugin cooperates with several popular privacy-
focused plugins: AdBlock Plus, Privacy Badger, Ghostery, and Disconnect. FP-
Block perfectly cooperates alongside all in default settings. We note two caveats
to this. First, Disconnect blocks social media plugins, similar to FP-Block. This
functionality is implemented similarly in the two plugins. When both are run-
ning, social media plugins are blocked by both. Enabling a social media plugin
thus requires enabling it in both plugins. Second, AdBlock Plus is a generic
blocking plugin, into which blocklists can be loaded. There exist blocklists for
social plugins. Loading such a blocklist inherently causes interference between
AdBlock Plus and FP-Block.

7 Conclusions

Ubiquitous tracking on the web is a reality, enabled by the proliferation of em-
bedded content and effective fingerprinting techniques. Currently available coun-
termeasures against fingerprinting work by either blocking embedded content or
faking a web client’s characteristics. Not only does this break benign applica-
tions of fingerprinting (such as detecting session hijacking), but it also reduces

15

the user experience. In order to achieve a more practical balance between pri-
vacy and usability, we have introduced the notion of a web identity that allows
for re-identification within a web site, while it prevents tracking across websites.
Such a web identity is a set of fingerprintable characteristics that can be tweaked
on the user side.

We have developed a prototype web browser extension that supports the use
and management of web identities. In order to design our tool’s capabilities,
we investigated the fingerprint vector, i.e., the set of characteristics used for
fingerprinting, of the major fingerprint tools. This led to an up-to-date overview
of four major fingerprinters’ abilities.

The web identities generated by our tool are distinct and consistent. This
means that two generated web identities are sufficiently different to prevent being
linked by current fingerprint tools and that the attributes are being spoofed in
such a way that their combination doesn’t stand out. Consistency is achieved by
implementing a Markov model for the generating of attribute values.

Fingerprint tools will be able to re-identify users even after minor changes or
regular updates of their computing environment. Therefore, our tool should not
generate web identities that can be linked in this way. Our current approach,
consisting of classifying attributes, is a rather crude heuristic. We consider a
refinement of this approach as interesting future work. Thereto, we propose to
collect data on the evolution of client side attributes, in order to build a Markov
model that will decide if two generated web identities are sufficiently distinct.

Finally, our prototype implementation only addresses the HTTP and JavaScript
layers of communication. Given the focus of the current fingerprinting tools, this
already provides a significant level of practical privacy. Nevertheless, the arms
race between fingerprinters and anti-tracking tools will continue, so we consider
extending the current fingerprint vector of our tool as an ongoing activity.

References

1. G. Acar, C. Eubank, S. Englehardt, M. Juárez, A. Narayanan, and C. Dı́az. The
web never forgets: Persistent tracking mechanisms in the wild. In Proc. 21st ACM
Conference on Computer and Communications Security (CCS’14), pages 674–689.
ACM Press, 2014.

2. G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and B. Preneel.
FPDetective: Dusting the web for fingerprinters. In Proc. 20th ACM SIGSAC
Conference on Computer and Communications Security (CCS’13), pages 1129–
1140. ACM Press, 2013.

3. K. Boda, Á. Máté Földes, G. György Gulyás, and S. Imre. User tracking on the web
via cross-browser fingerprinting. In Proc. 16th Nordic Conference on Information
Security Technology for Applications (NordSec’11), volume 7161 of LNCS, pages
31–46, Berlin, Heidelberg, 2011. Springer-Verlag.

4. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington, 2004.

5. P. Eckersley. How unique is your web browser? In Proc. 10th Symposium on
Privacy Enhancing Technologies (PETS’10), volume 6205 of LNCS, pages 1–18.
Springer-Verlag, 2010.

16

6. T. Kohno, A. Broido, and K. Claffy. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing, 2(2):93–108, 2005.

7. B. Krishnamurthy and C.E. Wills. Generating a privacy footprint on the internet.
In Proc. 6th ACM SIGCOMM Conference on Internet measurement (ICM’06),
pages 65–70. ACM Press, 2006.

8. J.C. Mitchell and J.R. Mayer. Third-party web tracking: Policy and technology.
Proc. IEEE Symposium on Security and Privacy (S&P’12), 0:413–427, 2012.

9. K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fingerprinting information
in JavaScript implementations. In Proc. Web 2.0 Security & Privacy (W2SP’11).
IEEE Computer Society, 2011.

10. K. Mowery and H. Shacham. Pixel Perfect: Fingerprinting canvas in HTML5. In
Proc. Web 2.0 Security & Privacy (W2SP’12). IEEE Computer Society, 2012.

11. M. Mulazzani, P. Reschl, M. Huber, M. Leithner, S. Schrittwieser, and E.R. Weippl.
Fast and reliable browser identification with javascript engine fingerprinting. In
Proc. Web 2.0 Security & Privacy (W2SP’13), 5 2013.

12. N. Nikiforakis, W. Joosen, and B. Livshits. PriVaricator: Deceiving fingerprinters
with little white lies. Technical Report MSR-TR-2014-26, Microsoft Research,
February 2014.

13. N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna.
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In Proc. 34th IEEE Symposium on Security and Privacy (S&P’13), pages 541–555.
IEEE Computer Society, 2013.

14. F. Roesner, T. Kohno, and D. Wetherall. Detecting and defending against third-
party tracking on the web. In Proc. 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’12), pages 155–168. USENIX, 2012.

15. A. Roosendaal. We are all connected to facebook ... by facebook! In European
Data Protection: In Good Health, pages 3–19. Springer-Verlag, 2012.

16. T. Unger, M. Mulazzani, D. Fruhwirt, M. Huber, S. Schrittwieser, and E.R.
Weippl. SHPF: Enhancing http(s) session security with browser fingerprinting.
In Proc. Eighth International Conference on Availability, Reliability and Security
(ARES’13), pages 255–261. IEEE Computer Society, 2013.

17. T.-F. Yen, Y. Xie, F. Yu, R.P. Yu, and M. Abadi. Host fingerprinting and tracking
on the web: Privacy and security implications. In Proc. 19th Annual Network &
Distributed System Security Symposium (NDSS’12). The Internet Society, 2012.

17

	FP-Block: usable web privacy by controlling browser fingerprinting
	Christof Ferreira Torres1, Hugo Jonker2 and Sjouke Mauw1

